An Image-based Ensemble Kalman Filter for Motion Estimation
نویسندگان
چکیده
This paper designs an Image-based Ensemble Kalman Filter (IEnKF), whose components are defined only from image properties, to estimate motion on image sequences. The key elements of this filter are, first, the construction of the initial ensemble, and second, the propagation in time of this ensemble on the studied temporal interval. Both are analyzed in the paper and their impact on results is discussed with synthetic and real data experiments. The initial ensemble is obtained by adding a Gaussian vector field to an estimate of motion on the first two frames. The standard deviation of this normal law is computed from motion results given by a set of optical flow methods of the literature. It describes the uncertainty on the motion value at initial date. The propagation in time of the ensemble members relies on the following evolution laws: transport by velocity of the image brightness function and Euler equations for the motion function. Shrinking of the ensemble is avoided thanks to a localization method and the use of observation ensembles, both techniques being defined from image characteristics. This Image-based Ensemble Kalman Filter is quantified on synthetic experiments and applied on traffic and meteorological images.
منابع مشابه
Motion detection by a moving observer using Kalman filter and neural network in soccer robot
In many autonomous mobile applications, robots must be capable of analyzing motion of moving objects in their environment. Duringmovement of robot the quality of images is affected by quakes of camera which cause high errors in image processing outputs. In thispaper, we propose a novel method to effectively overcome this problem using Neural Networks and Kalman Filtering theory. Thistechnique u...
متن کاملMultiscale Weighted Ensemble Kalman Filter for Fluid Flow Estimation
This paper proposes a novel multi-scale fluid flow data assimilation approach, which integrates and complements the advantages of a Bayesian sequential assimilation technique, the Weighted Ensemble Kalman filter (WEnKF) [12], and an improved multiscale stochastic formulation of the Lucas-Kanade (LK) estimator. The proposed scheme enables to enforce a physically plausible dynamical consistency o...
متن کاملAn Effective Attack-Resilient Kalman Filter-Based Approach for Dynamic State Estimation of Synchronous Machine
Kalman filtering has been widely considered for dynamic state estimation in smart grids. Despite its unique merits, the Kalman Filter (KF)-based dynamic state estimation can be undesirably influenced by cyber adversarial attacks that can potentially be launched against the communication links in the Cyber-Physical System (CPS). To enhance the security of KF-based state estimation, in this paper...
متن کاملDigital image stabilization with sub-image phase correlation based global motion estimation
This paper presents digital image stabilization with sub-image phase correlation based global motion estimation and Kalman filtering based motion correction. Global motion is estimated from the local motions of four subimages each of which is detected using phase correlation based motion estimation. The global motion vector is decided according to the peak values of sub-image phase correlation ...
متن کاملDesign and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015